(资料图片仅供参考)
1、D(1)=0D(2)=1D(3)=2D(4)=9D(5)=44D(6)=265D(7)=1854错位重排的结论:如果有n个对象,则错位重排的情况数用Dn表示,需要大家了解的是:D2=1,D3=2,D4=9,D5=44。
2、错位重排的题干特征还是非常明显的,比如四个大厨烧了四道菜,每个大厨都不吃自己菜的方式有多少种,这就是3个元素的错位重排,注意不是6个元素的错位重排;再比如有4个信封对应着四封信,每封信不装自己信封的方式有多少种就是四个元素的错位重排;有5对夫妻去跳舞,相互交换舞伴,舞伴不是自己配偶的方式有多少种,就是5个元素的错位重排。
3、扩展资料:表述为:编号是2、n的n封信,装入编号为2、n的n个信封,要求每封信和信封的编号不同,装法:对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1,Dn=(n-1)(Dn-2+Dn-1) 此处n-2、n-1为下标。
4、n>2只需记住Dn的前几项:D1=0,D2=1,D3=2,D4=9,D5=44。
5、我们只需要记住结论,进行计算就可以。
6、参考资料来源:百度百科-错位重排。
本文到此分享完毕,希望对大家有所帮助。
关键词: